
THE FORMATION OF 8-SUBSTITUTED HOMOTROPYLIUM SALTS FROM CYCLOOCTA-1,3,5-TRIENE DERIVATIVES

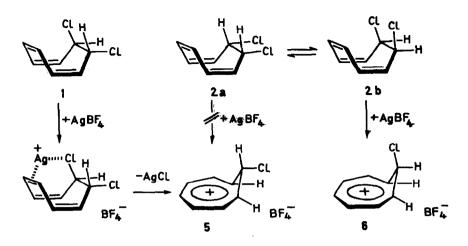
Johann Gasteiger and Rolf Huisgen

Institut für Organische Chemie der Universität, 8 München 2, Karlstraße 23 ((Germany)

(Received in UK 24 July 1972; accepted for publication 30 July 1972)

Treatment of <u>cis-7,8-dichlorocyclooctatriene</u> $(\underline{2})$ (1) in dichloromethane with SbCl₅, SbF₅, SnCl₄ or AgSbF₆ is known to produce <u>exo-8-chlorohomotropylium</u> salts, whereas with fluorosulfonic acid 2 gives the <u>endo-8-chlorohomotropylium</u> salt (2). A closer investigation showed the relationships to be complicated, and the isomerizations reported in the preceding communication (3) offer a <u>ra-</u><u>tionale</u>.

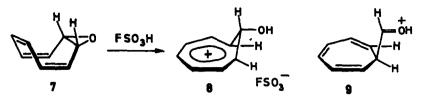
When <u>trans</u>-7,8-dichlorocyclooctatriene (1) (2) was introduced into a chloroform solution of 4 equivalents of SbCl₅ at -70°, a quantitative yield of the crystalline <u>exo</u>-chloro hexachloroantimonate 3 precipitated. N.m.r. analysis in SO₂ disclosed no detectable amount of the <u>endo</u>-isomer 4. Thus, the removal of the <u>endo</u>-chlorine of 1 by the Lewis acid is much faster than removal of the <u>exo</u>-Cl in 1. This result is in accordance with the highly stereoselective <u>endo</u>attack of Cl⁻ on the chlorohomotropylium ions 3 and 4 (2).


Antimony pentachloride seems to be a Lewis acid of sufficient strength to abstract chloride from the <u>exo</u>- and the <u>endo</u>-conformer of <u>cis</u>-7,8-dichlorocyclooctatriene; the equilibrium of $\frac{2a}{2a}$ and $\frac{2b}{2}$ at -54° is 46 : 54 in dichloromethane and 49 : 51 in SO₂. Introduction of $\frac{2}{2}$ into the solution of 2 equivalents of SbCl₅ in chloroform at -70° leads to 100% of the crystalline salts $\frac{3}{2}$ and $\frac{4}{2}$ in the ratio 1.0 : 1.0 (n.m.r. analysis in SO₂ at -40°). Pure <u>endo</u>-chloro hexachloroantimonate $\frac{4}{2}$ has been obtained by chlorination of cyclooctatetraene with two moles of SbCl₅.

The \underline{exo} - and \underline{endo} -chloro salts $\underline{3}$ and $\underline{4}$ are virtually insoluble in chloroform, but are slightly soluble in dichloromethane. In $\mathrm{CH}_2\mathrm{Cl}_2$, dropwise introduction of $\underline{2}$ to a solution of 4 equivalents of SbCl₅ at -75° or the reverse addition resulted in pure \underline{exo} -chloro salt. $\underline{3}$. We suppose that in the solution \underline{endo} - \underline{exo} -isomerization $\underline{4} \rightarrow \underline{3}$ took place, efficiently catalyzed by the covalent dichloride $\underline{2}$ (3), which is present for an instant at the site of mixing. In SO₂ at -75°, addition of $\underline{2}$ into 3 equivalents of SbCl₅ produced in homogenous solution ca. 10-20% of the \underline{endo} -salt $\underline{4}$ along with the predominant \underline{exo} -isomer $\underline{3}$ (n.m.r. analysis at -40°).

Dropwise addition of $\frac{2}{2}$ in SO₂ClF to the solution of SbF₅ in the same solvent at -75[°] resulted in a 1:1 mixture of $\frac{3}{2}$ and $\frac{4}{2}$ (SbF₅Cl⁻ instead of SbCl⁻₆). Thus, both conformers $\frac{2a}{2}$ and $\frac{2b}{2}$ are ionized by SbF₅.

In contrast to SbHal₅ silver tetrafluoroborate abstracts Cl⁻ only from the <u>endo</u>-side of 1 and 2b; it does not react with 2a. The silver ion seems to be inferior to SbHal₅ as a Lewis acid. A primary complexation of Ag^+ with the double bond is conceivable, as illustrated in the scheme for the reaction with the <u>trans</u>-dichloride 1, which gives the <u>exo</u>-chloro salt 5 exclusively. The same kind of assistance by the double bond is only possible in 2b, not in 2a.


8 - A **4**

After dropwise introduction of a solution of $\frac{2}{2}$ in 1,2-dichloroethane into 2-3 equivalents of AgBF₄ in the same solvent at -30°, the solvent was pumped off at -20°. Extraction of the residue with SO₂ at -60° - $\frac{5}{2}$ and $\frac{6}{2}$ are soluble in SO₂ - and n.m.r. spectroscopy of the solution disclosed that only the <u>endo</u>-chloro tetrafluoroborate $\frac{6}{2}$ was formed. Addition of chloroform to the SO₂ solution allowed the crystallization of $\frac{6}{2}$, m.p. 48-50° (dec., under N₂), which decomposes rapidly on exposure to air.

However, by the <u>reverse</u> procedure, i.e. addition of $AgBF_4$ to $\frac{2}{2}$ in 1,2dichloroethane at -30°, removal of the solvent, extraction with SO_2 at -30° and precipitation with chloroform, the <u>exo</u>-chloro fluoroborate $\frac{5}{2}$, m.p. 70-71°, was obtained. This salt must be handled with rigorous exclusion of air and moisture. The product of an analogous reaction, carried out in SO_2 solution at -50°, turned out to be pure $\frac{5}{2}$ according to the n.m.r. spectrum. Under these conditions, an excess of $\frac{2}{2}$ is present during the reaction and exerts a strong catalysis (3) of the conversion $\frac{6}{2} \rightarrow \frac{5}{2}$.

In 1957 Ganellin and Pettit (5) postulated the 8-hydroxycycloocta-2,4,6trienyl cation as an intermediate in the acid-catalyzed conversion of 7,8epoxycycloocta-1,3,5-triene ($\frac{7}{2}$) to 7-formylcyclohepta-1,3,5-triene. The cationic intermediate should now be reformulated as 8-hydroxyhomotropylium ion.

The preparation of the fluorosulfonate $\frac{8}{2}$ of this homoaromatic species succeeded when we condensed $\frac{7}{2}$ slowly in high vacuum into stirred fluorosulfonic acid at -75°. Polymerization was minimized under these conditions. The <u>endo-H</u> proton signal in the n.m.r. spectrum (Fig.) leaves no doubt that the <u>exo-8-hydroxy</u> ion $\frac{8}{2}$ was formed.

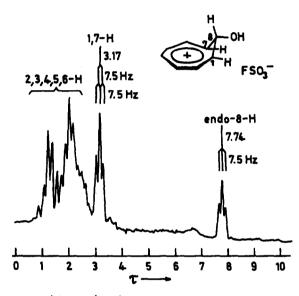


Figure. N.m.r. spectrum (60 Mc/sec) of <u>exo</u>-8-hydroxy-homotropylium fluorosulfonate (8) in fluorosulfonic acid at -40° .

Comparison of n.m.r. data (Table) of 8-substituted homotropylium salts with the parent compound allows some interesting conclusions. The unusually high $\Delta\tau$ (endo-8-H minus exo-8-H) of 5.10-5.86 ppm is the result of diamagnetic or paramagnetic shielding, respectively, by the induced homoaromatic ring current (6). The endo- oder exo-8-halogen and exo-8-OH shifts the 8-H triplet to lower field. The substituent influence corresponds qualitatively, but not quantitatively (Table 2), with the one observed in simple CH₂-X compounds (7). The No...35

low τ value of <u>endo</u>-8-H in <u>8</u> suggest some contribution from the hyperconjugated structure 2.

Table 1. τ -and J-values in the 60 MHz ¹H n.m.r. spectra of homotropylium salts in SO₂ or FSO₃H at -40[°]

Refe-	Homotropylium		Anion	¹ 1+7	*8	^τ 8	J (Hz)		
rence	<u>exo</u> -8	<u>endo</u> -8			endo	exo	1, <u>endo</u> -8	1, <u>exo</u> -8	1,2
	н	н	FS03	3.57	10.73	4.87	9.8	6,5	
(4)	н	Cl	SPC1 6	3.65	-	2.73	-	6.7	6.8
	н	C1	BF4	3.67	-	2.71	-	6.8	6.8
(4)	н	Br	BF4	3.66	-	2.70	-	6.9	6 .9
(2)	Cl	н	sbC16	3.13	8.51	-	8.2	-	8.3
	Cl	н	BF4	3.18	8.51	-	8.3	-	8.3
(4)	Br	н	BF4	3.19	8.76	-	8.4	-	8.4
(4)	I	н	BF4	3.18	9.00	-	9.3	-	8.2
	он	н	FS03	3.17	7 • 74	-	7.5	-	7•5

Table 2. N.m.r. comparison between $8-\underline{exo}$ -substituted homotropylium ions and compounds CH_3-X

٨

	exo-OH	<u>exo</u> -C1	exo-B	r	<u>exo</u> -1		exo-H
τ(<u>endo</u> -8-H)	7 - 74	8.51	8.76		9.00		10.73
Δτ (ppm)	0.77		0.25	0.24		1.73	
	сн _э -он	^{сн} з-с1	^{СН} Э-Вг		сн _з -ј		^{сн} з-н
т(СН _З)	6.60	6.95	7.31		7.81		9.78
Δτ (ppm)	0.35		0.36	0.50		1.97	

3669

REFERENCES

- (1) R. Huisgen, G. Boche, W. Hechtl, and H. Huber, <u>Angew.Chem.</u>, <u>78</u>, 595 (1966); <u>Angew.Chem.Internat.Edit.</u>, 5, 585 (1966).
- (2) G. Boche, W. Hechtl, H. Huber, and R. Huisgen, <u>J.Amer.Chem.Soc.</u>, <u>89</u>, 3344 (1967).
- (3) R. Huisgen and J. Gasteiger, Tetrahedron Letters, preceding.
- (4) R. Huisgen and J. Gasteiger, <u>J.Amer.Chem.Soc.</u>, in press.
- (5) C.R. Ganellin and R. Pettit, Chem. Ber., 90, 2951 (1957).
- (6) J.L. v. Rosenberg, J.E. Mahler, and R. Pettit, <u>J.Amer.Chem.Soc.</u>, <u>84</u>, 2842 (1962).
- (7) A.L. Allred and E.G. Rochow, <u>ibid.</u>, 79, 5361 (1957); J.R. Cavanaugh and
 B.P. Dailey, <u>J.Chem.Phys.</u>, <u>34</u>, 1099 (1961).